14 research outputs found

    Detection and Physical Interaction with Deformable Linear Objects

    Full text link
    Deformable linear objects (e.g., cables, ropes, and threads) commonly appear in our everyday lives. However, perception of these objects and the study of physical interaction with them is still a growing area. There have already been successful methods to model and track deformable linear objects. However, the number of methods that can automatically extract the initial conditions in non-trivial situations for these methods has been limited, and they have been introduced to the community only recently. On the other hand, while physical interaction with these objects has been done with ground manipulators, there have not been any studies on physical interaction and manipulation of the deformable linear object with aerial robots. This workshop describes our recent work on detecting deformable linear objects, which uses the segmentation output of the existing methods to provide the initialization required by the tracking methods automatically. It works with crossings and can fill the gaps and occlusions in the segmentation and output the model desirable for physical interaction and simulation. Then we present our work on using the method for tasks such as routing and manipulation with the ground and aerial robots. We discuss our feasibility analysis on extending the physical interaction with these objects to aerial manipulation applications.Comment: Presented at ICRA 2022 2nd Workshop on Representing and Manipulating Deformable Objects (https://deformable-workshop.github.io/icra2022/

    UAS Simulator for Modeling, Analysis and Control in Free Flight and Physical Interaction

    Full text link
    This paper presents the ARCAD simulator for the rapid development of Unmanned Aerial Systems (UAS), including underactuated and fully-actuated multirotors, fixed-wing aircraft, and Vertical Take-Off and Landing (VTOL) hybrid vehicles. The simulator is designed to accelerate these aircraft's modeling and control design. It provides various analyses of the design and operation, such as wrench-set computation, controller response, and flight optimization. In addition to simulating free flight, it can simulate the physical interaction of the aircraft with its environment. The simulator is written in MATLAB to allow rapid prototyping and is capable of generating graphical visualization of the aircraft and the environment in addition to generating the desired plots. It has been used to develop several real-world multirotor and VTOL applications. The source code is available at https://github.com/keipour/aircraft-simulator-matlab.Comment: In proceedings of the 2023 AIAA SciTech Forum, Session: Air and Space Vehicle Dynamics, Systems, and Environments II

    Demonstrating Large-Scale Package Manipulation via Learned Metrics of Pick Success

    Full text link
    Automating warehouse operations can reduce logistics overhead costs, ultimately driving down the final price for consumers, increasing the speed of delivery, and enhancing the resiliency to workforce fluctuations. The past few years have seen increased interest in automating such repeated tasks but mostly in controlled settings. Tasks such as picking objects from unstructured, cluttered piles have only recently become robust enough for large-scale deployment with minimal human intervention. This paper demonstrates a large-scale package manipulation from unstructured piles in Amazon Robotics' Robot Induction (Robin) fleet, which utilizes a pick success predictor trained on real production data. Specifically, the system was trained on over 394K picks. It is used for singulating up to 5 million packages per day and has manipulated over 200 million packages during this paper's evaluation period. The developed learned pick quality measure ranks various pick alternatives in real-time and prioritizes the most promising ones for execution. The pick success predictor aims to estimate from prior experience the success probability of a desired pick by the deployed industrial robotic arms in cluttered scenes containing deformable and rigid objects with partially known properties. It is a shallow machine learning model, which allows us to evaluate which features are most important for the prediction. An online pick ranker leverages the learned success predictor to prioritize the most promising picks for the robotic arm, which are then assessed for collision avoidance. This learned ranking process is demonstrated to overcome the limitations and outperform the performance of manually engineered and heuristic alternatives. To the best of the authors' knowledge, this paper presents the first large-scale deployment of learned pick quality estimation methods in a real production system.Comment: Robotics: Science and Systems (RSS 2023) conference, July 10 - 14, 2023, Daegu, Republic of Kore

    Pick Planning Strategies for Large-Scale Package Manipulation

    Full text link
    Automating warehouse operations can reduce logistics overhead costs, ultimately driving down the final price for consumers, increasing the speed of delivery, and enhancing the resiliency to market fluctuations. This extended abstract showcases a large-scale package manipulation from unstructured piles in Amazon Robotics' Robot Induction (Robin) fleet, which is used for picking and singulating up to 6 million packages per day and so far has manipulated over 2 billion packages. It describes the various heuristic methods developed over time and their successor, which utilizes a pick success predictor trained on real production data. To the best of the authors' knowledge, this work is the first large-scale deployment of learned pick quality estimation methods in a real production system.Comment: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Learning Meets Model-based Methods for Manipulation and Grasping Worksho

    Visual Servoing Approach for Autonomous UAV Landing on a Moving Vehicle

    Full text link
    We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle with a circular (or elliptical) pattern on the top. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. It does not rely on additional external setup, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only a minimal set of hardware and localization sensors. The videos and source codes can be accessed from http://theairlab.org/landing-on-vehicle.Comment: 24 page

    Physical Interaction and Manipulation of the Environment using Aerial Robots

    Full text link
    The physical interaction of aerial robots with their environment has countless potential applications and is an emerging area with many open challenges. Fully-actuated multirotors have been introduced to tackle some of these challenges. They provide complete control over position and orientation and eliminate the need for attaching a multi-DoF manipulation arm to the robot. However, there are many open problems before they can be used in real-world applications. Researchers have introduced some methods for physical interaction in limited settings. Their experiments primarily use prototype-level software without an efficient path to integration with real-world applications. We describe a new cost-effective solution for integrating these robots with the existing software and hardware flight systems for real-world applications and expand it to physical interaction applications. On the other hand, the existing control approaches for fully-actuated robots assume conservative limits for the thrusts and moments available to the robot. Using conservative assumptions for these already-inefficient robots makes their interactions even less optimal and may even result in many feasible physical interaction applications becoming infeasible. This work proposes a real-time method for estimating the complete set of instantaneously available forces and moments that robots can use to optimize their physical interaction performance. Finally, many real-world applications where aerial robots can improve the existing manual solutions deal with deformable objects. However, the perception and planning for their manipulation is still challenging. This research explores how aerial physical interaction can be extended to deformable objects. It provides a detection method suitable for manipulating deformable one-dimensional objects and introduces a new perspective on planning the manipulation of these objects.Comment: Robotics Ph.D. Dissertation - Carnegie Mellon University Robotics Institute, May 2022 https://www.ri.cmu.edu/publications/physical-interaction-and-manipulation-of-the-environment-using-aerial-robots
    corecore